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Abstract. Assuming the proton’s light-cone wave function to be dominated by small parton virtualities and
small intrinsic transverse momenta, we show that the electroproduction amplitudes at large momentum
transfer factorize into parton-level subprocess amplitudes and form factors representing 1/x-moments of
skewed parton distributions. On the basis of a wave function overlap model for the form factors we present
detailed predictions for the electroproduction cross sections. We also comment on large momentum transfer
photoproduction.

1 Introduction

The interest in hard exclusive reactions has recently been
renewed in the context of skewed parton distributions
(SPDs) [1–3]. The SPDs, defined as hadronic matrix ele-
ments of bilocal products of quark or gluon field operators,
are hybrid objects which combine properties of form fac-
tors and ordinary parton distributions. In fact reduction
formulas reveal the close connection of these quantities.
It has been shown that, at large photon virtuality Q2,
and small momentum transfer, deeply virtual Compton
scattering (DVCS) [3,4] and deeply virtual electroproduc-
tion of mesons (DVEM) [5,6] factorize into hard photon–
parton scattering and SPDs describing the soft coupling
between partons and hadrons. DVEM is dominated by lon-
gitudinally polarized photons for Q2 → ∞; the cross sec-
tion for transversally polarized photons is suppressed by
1/Q2. Complementary to the large Q2 region is the large
momentum transfer region (small Q2). In this kinemati-
cal region Compton scattering off protons factorizes into a
hard parton-level subprocess and a soft proton matrix ele-
ment that is described by new form factors [7]. These form
factors represent 1/x-moments of SPDs at large momen-
tum transfer. Based on light-cone wave function overlaps
as a model for the SPDs, detailed predictions for cross
sections and polarization observables for real and virtual
Compton scattering have been achieved in [7–9].
In this work we are going to apply the soft mechanism

proposed in [7,8] to electroproduction of flavor-neutral
pseudoscalar (P = π0, η, η′) and longitudinally polar-
ized vector (V = ρ0, ω, φ) mesons. We will show that all
arguments given in [7] in order to establish factorization
of Compton scattering, apply here too. I.e., provided the
virtualities of the partons and their intrinsic transverse
momenta, defined with respect to their parent proton’s
momentum, are restricted by the proton’s wave function,
the dominant contribution to electroproduction is gener-

ated from the handbag-type diagram shown in Fig. 1. It
factorizes into meson electroproduction off partons and
soft proton matrix elements described by the same type
of form factors as appears in Compton scattering. It is
shown in [7] that, at large momentum transfer, there is
one parton with a large virtuality that couples to the me-
son and forces the exchange of at least one hard gluon.
We, therefore, follow the concept used in the calculation
of DVEM [5,6] and treat meson electroproduction off par-
tons to leading-twist, lowest-order perturbative QCD. A
purely soft mechanism for large momentum transfer elec-
troproduction of mesons, i.e., a soft overlap of the three
light-cone wave functions for the hadrons involved is not
possible [7]. It is to be stressed, however, that the soft
mechanism is not dominant for asymptotically large mo-
mentum transfer. In this limit the hard perturbative mech-
anism, for which all partons participate in the hard pro-
cess, provides the leading contribution [10] and the soft
one merely represents a power correction. In this respect
factorization of the soft mechanism is not on the same
footing as the one, say, for DVEM, where the factorizing
diagrams are dominant for asymptotically large photon
virtuality, and where factorization can be proven to hold in
all orders of perturbation theory. The soft mechanism ap-
plies to photoproduction of mesons as well. However, the
contributions from the hadronic component of the photon
seem to dominate these processes for values of energy and
momentum transfer accessible in current experiments.
It is also important to realize that the soft mechanism

is complementary to the perturbative one, and both con-
tributions have to be taken into account in principle. How-
ever, recent developments, initiated by the CLEO mea-
surements [11] of the πγ transition form factor and its
theoretical analysis as in, e.g., [12–14], revealed that soft
contributions play an important role in hard exclusive re-
actions at experimentally accessible momentum transfer
which is of the order of a few GeV. Indeed, in the case of
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Fig. 1. The handbag-type diagram for electroproduction of
mesons. The large blob represents a sum over all spectator
configurations. k and k′ denote the momenta of the active par-
tons. The small blob stands for meson electroproduction off
partons

the electromagnetic form factor of the proton, the pertur-
bative contribution has been shown to be small as com-
pared to experiment [15,16] provided the end-point re-
gions, where one of the parton momentum fractions tends
to zero, and where perturbative QCD is not applicable
[17], are sufficiently suppressed. This can be achieved by
employing the modified perturbative approach [18] in
which the transverse degrees of freedom and Sudakov sup-
pressions are taken into account.
The soft contribution to large momentum transfer

Compton scattering evaluated along the same lines as for
the electromagnetic form factors, is in reasonable agree-
ment with experiment [7,8]. The perturbative contribu-
tion, on the other hand, has only been calculated to lead-
ing-twist accuracy [19] and is way below the Compton
data [20] unless strongly asymmetric, i.e., end-point con-
centrated distribution amplitudes are used. These give,
however, results for which the bulk of the contribution
is accumulated in the soft end-point regions where the as-
sumptions of leading-twist perturbative calculations break
down. Even if asymmetric distribution amplitudes are uti-
lized one obtains a perturbative contribution to Compton
scattering that likely amounts to less than 10% of the
data for momentum transfer in the region of a few GeV
[19]; the onset of the perturbative regime is expected to
be above 10GeV. The calculation of the leading-twist per-
turbative contribution to photoproduction of mesons has
been attempted by Farrar et al. [21]. The results are at
drastic variance with experiment [20,22] and need ver-
ification since the method for the numerical integrations
used by Farrar et al. is questionable and is known to fail in
Compton scattering. On account of experience with elec-
tromagnetic form factors and Compton scattering, we will
assume that the soft contribution to electroproduction of
mesons are much larger than the perturbative ones for
momentum transfers of the order of a few GeV and that
the onset of the perturbative regime is beyond 10GeV.
There are still other contributions to electroproduc-

tion. For instance, there is one that has two active partons,
the photon couples to one of them while, by insertion of a
hard gluon, the other one generates the vector meson. This
contribution has the topology of the so-called cat’s ears di-
agrams. As has been discussed in [7] for the case of large
momentum transfer Compton scattering, large virtualities

or intrinsic transverse momenta occur in the cat’s ears di-
agrams forcing the exchange of additional hard gluons.
Therefore, the cat’s ears are expected to be suppressed in
Compton scattering as compared to the handbag contribu-
tion. The situation is more complicated in the case of elec-
troproduction. There are graphs of non-handbag topology
for which there is no immediate argument for suppres-
sion. The calculation of such contributions is difficult and
beyond the scope of the present paper. We will neglect
these contributions being, however, aware that they may
provide substantial corrections to the handbag-type con-
tributions.
It is reasonable to assume that the magnitude of the

cat’s ears contribution is between the soft and the pertur-
bative ones.
The paper is organized as follows: In Sect. 2 we will

present the derivation of the soft mechanism. Next we
will discuss the necessary phenomenological input that
parameterizes the soft hadronic matrix elements (Sect. 3).
In Sect. 4 we will comment on the case of photoproduc-
tion and then present our results for electroproduction of
mesons (Sect. 5). In Sect. 6 we present our summary.

2 The soft mechanism

We are interested in electroproduction of mesons in the
kinematical region where the Mandelstam variables s =
(p + q)2, −t = −∆2 and −u = −(p − q′)2 are large on
a hadronic scale, Λ, of order 1GeV. Q2 is not considered
as a large scale. Therefore the limit Q2 → 0, the case
of photoproduction, is included in the following. The cal-
culation of soft contributions to the process of interest
can be performed in full analogy to the case of Compton
scattering; all its steps can be adopted straightforwardly.
We can, therefore, restrict ourselves to an outline of the
calculation; for details we refer to [7]. The process ampli-
tude is evaluated from the handbag-type diagram shown in
Fig. 1 where also the four-momenta are defined (as usual
Q2 = −q2). We work in a symmetric frame where the
transverse momenta of the incoming and outgoing pro-
tons are treated in a symmetric way (see Fig. 2):

p =
[
p+,

m2 − t/4
2p+ ,−1

2
∆⊥

]
,

p′ =
[
p+,

m2 − t/4
2p+ ,

1
2
∆⊥

]
, (1)

where m is the mass of the proton. The plus and minus
light-cone components of the momentum transfer are zero
in this frame (∆+ = ∆− = 0) and therefore t = −∆2

⊥.
The chief advantage of the symmetric frame is that the
skewedness parameter, defined by

ζ = −∆+

p+ = 1− p
′+

p+ , (2)

is zero. In order to specify the frame fully we further im-
pose p3 + q3 = 0. This coincides with the c.m. frame for
photoproduction with the 3-axis along p+ p′.
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Fig. 2. Light-cone plus and transverse components of hadron,
photon and parton momenta in the symmetric frame

The parton momenta are denoted by ki and k′
i. They

are characterized by the usual momentum fractions

xi = k+
i /p

+, x′
i = k′+

i /p
′+, (3)

and the transverse components k⊥i and k′
⊥i. Because of

ζ = 0 in the frame we are working in, xi = x′
i. The

arguments of the light-cone wave functions are given by
the momentum fractions and the intrinsic transverse par-
ton momenta, i.e., the transverse components of the par-
ton momenta in a frame where the transverse momentum
of the parent proton is zero. By performing appropriate
(transverse) boosts one finds for the light-cone wave func-
tion arguments of the incoming hadron

x̃i = xi, k̃⊥i = k⊥i + xi∆⊥/2. (4)

The arguments of the light-cone wave function of the scat-
tered proton are x̂′ = x′

i and k̂′
⊥i = k′

⊥i − x′
i∆⊥/2. For

simple notation, we henceforth drop the subscripts for the
active partons, i.e., for those participating in the sub-
process that mediates the photon–meson transition (see
Fig. 1).
The crucial hypothesis in the soft physics approach

is now that the soft proton wave functions, i.e. the full
wave functions with their perturbative tails removed from
them, are dominated by parton virtualities in the range
|k2
i |, |k′2

i |<∼Λ2 and by intrinsic transverse parton momenta
satisfying k̃2

⊥i/xi, k̂
′2⊥i/x′

i
<∼Λ21. With the help of this hy-

pothesis one can show [7] that the subprocess Mandelstam
variables, ŝ = (k + q)2 and û = (k′ − q)2, are respectively
equal to s and u up to corrections of order Λ2(t ± Q2)/t
provided s and −u are large on a hadronic scale. This
implies that the poles at ŝ � 0 and û � 0 appearing
in the lowest-order Feynman graphs that contribute to
the subprocess γ∗q → Mq (see Fig. 3) are avoided and,
hence, the pole contributions can be neglected. The phys-
ical situation is that of a hard parton-level subprocess
(ŝ,−t,−û � Λ2) and the soft emission and reabsorption

1 A restriction to intrinsic transverse momenta k̃2
⊥i

<∼ Λ2 in-
stead of k̃2

⊥i/xi <∼ Λ2 fails as is shown in [7]. At least one of the
parton virtualities would be of order Λ(−t)1/2 and not Λ2

Fig. 3. Lowest order Feynman graphs contributing to the sub-
process γ∗q → Mq where q is either a quark or an antiquark.
The upper quark and antiquark lines enter the meson’s wave
function. The internal curly lines represent hard gluons

of a parton by the proton described by a soft proton ma-
trix element. Hence, we can write the helicity amplitude
for the process γ∗p → Mp as

MM(q)
µ′ν′,µν

=
∑
a

eeaB
M
a

∫
d4kθ(k+)

∫
d4z

(2π)4
eik·z

×
[〈
p′ν′ ∣∣Tψaα(0)ψaβ(z)∣∣ pν〉HM(q)αβ

µ′µ (k′, k)

+
〈
p′ν′ ∣∣Tψaα(z)ψaβ(0)∣∣ pν〉HM(q)αβ

µ′µ (−k,−k′)
]
, (5)

where HM(q)
µ′µ is the tree-level expression for the hard scat-

tering kernel. µ and µ′ respectively denote the helicities
of the photon and the meson, ν and ν′ those of the pro-
tons. For the sake of legibility we label explicit helicities
only by their signs, e.g. we write +, − instead of +1/2,
−1/2 for fermions. The helicities are defined in the γ∗p
c.m. frame which is convenient for phenomenological ap-
plications and facilitates comparison with other results.
On the other hand, the symmetric frame is adapted to
discuss the reaction mechanism. The sum runs over quark
flavors a, ea being the electric charge of quark a in units
of the positron charge e and BM

a denotes the meson’s fla-
vor wave function. The first term in (5) corresponds to
the case where the incoming parton in the subprocess is a
quark, the second term corresponds to an incoming anti-
quark. For the production of flavor-neutral vector mesons
gluons have to be considered as active partons too. We
will discuss this contribution separately below.
Since the subprocess is dominated by a large scale, we

can approximate the momenta k, k′ of the active partons
in the subprocess as being on-shell, collinear with their
parent hadrons

k �
[
k+,− t

8k+ ,−
1
2
∆⊥

]
,

k′ �
[
k+,− t

8k+ ,
1
2
∆⊥

]
. (6)

The integration over k− and k⊥ in (5) can then be per-
formed explicitly leaving an integral

∫
dk+

∫
dz− and forc-

ing the relative distance of fields in the matrix elements
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Fig. 4. Parton picture of the soft proton matrix element

on the light cone, z → z̄ = [0, z−,0⊥]. After this the time
ordering of the fields can be dropped [23].
The proton matrix element can be viewed as the am-

plitude for a proton with momentum p emitting the active
parton with momentum k and a number of on-shell spec-
tators times the corresponding conjugated amplitude for
p′, k′ summed over all spectator configurations, see Fig. 4.
This corresponds to inserting a complete set of intermedi-
ate states between quark and antiquark fields in (5). Real-
izing that at the proton–parton vertices one has large plus
components but, on account of the central hypothesis of
small parton virtualities and small intrinsic transverse mo-
menta, k̃2

⊥i/xi, k̂
′2
⊥i/x

′
i
<∼Λ2, one cannot form large kine-

matical invariants. With this feature of the soft mechanism
at hand one can replace the products of fields in (5) by

ψα(0)ψβ(z̄) →
(
1
2k+

)2 ∑
λ,λ′

(
ψ(0)γ+u(k′, λ′)

)
× (

ū(k, λ)γ+ψ(z̄)
)
ūα(k′, λ′)uβ(k, λ), (7)

where λ and λ′ denote the helicities of the active partons
and u their on-shell spinors. An analogous replacement is
possible for the product ψaα(z̄)ψaβ(0). In this case anti-
quark spinors, v, appear. Due to this replacement the hard
scattering kernels in (5) are multiplied with the spinors for
on-shell (anti)quarks

HM(q)
µ′λ′,µλ = ū(k′, λ′)HM(q)

µ′,µ (k
′, k)u(k, λ), (8)

which guarantees electromagnetic gauge invariance of our
result. The charge conjugation properties of Dirac matri-
ces and spinors relate the subprocess amplitudes involving
antiquarks to the quark amplitudes

v̄(k, λ)HM(q)
µ′µ (−k,−k′)v(k′, λ′) = κMHM(q)

µ′λ′,µλ, (9)

where κV = −1 for vector mesons and κP = +1 for pseu-
doscalar ones. The replacement (7) reveals that the plus
components of the non-local currents dominate the pro-
ton matrix element and that the operators in the matrix
elements are in fact the same as those of the leading-twist
parton distributions occurring in deep-inelastic lepton-nu-
cleon scattering, DVCS or DVEM. This is a non-trivial
dynamical feature of large momentum transfer Compton
scattering and electroproduction of mesons, given that, in
contrast to the deeply virtual reactions, not only the plus
components of the parton momenta but also their minus
and transverse components are large now.
As mentioned above we follow the concept used in the

calculation of DVEM [5,6,24] and treat the formation of

the helicity zero mesons (µ′ = 0) to leading-twist, lowest-
order perturbative QCD (cf. Fig. 3). In combination with
the disregard of quark masses this formation mechanism
leads to conservation of quark helicity in the subprocess,
λ′ = λ. This feature and properties of massless spinors
allow one to simplify the expression (5) further, and to
arrive at

MM(q)
0ν′,µν =

1
4

∑
λ

∑
a

eeaB
M
a

∫
dk+

k+ θ(k+)
∫
dz−

2π
eik

+z−HM(q)
0λ,µλ

× [〈p′ν′|ψa(0)γ+ψa(z̄) + κMψa(z̄)γ+ψa(0)|pν〉
+λ〈p′ν′|ψa(0)γ+γ5ψa(z̄)

− κMψa(z̄)γ+γ5ψa(0)|pν〉
]
. (10)

Following [7], we take k+ = p+, i.e., the light-cone frac-
tions x = x′ = 1 in the hard scattering which is in line
with the requirement to have no hard parton directly cou-
pling to the protons. Admittedly, the global factor 1/k+

in (10) cannot be plainly associated with either the hard
scattering or the soft matrix element. We therefore choose
to keep k+ = xp+ for this factor. We can now pull out
the hard scattering amplitude from the integrals and use
a form factor decomposition for the integrated proton ma-
trix element [7,8]∫ 1

0

dx
x
p+

∫
dz−

2π
eixp

+z− 〈
p′ν′ ∣∣ψa(0)γ+ψa(z̄)

+κMψa(z̄)γ
+ψa(0)

∣∣ pν〉
= RMa

V (t)ū(p′, ν′)γ+u(p, ν)

+RMa
T (t)

i
2m

ū(p′, ν′)σ+β∆βu(p, ν),∫ 1

0

dx
x
p+

∫
dz−

2π
eixp

+z− 〈
p′ν′ ∣∣ψa(0)γ+γ5ψa(z̄)

−κMψa(z̄)γ+γ5ψa(0)
∣∣ pν〉

= RMa
A (t)ū(p′, ν′)γ+γ5u(p, ν). (11)

RMa
V , RMa

T and RMa
A are new form factors, depending on

the type of the meson, V or P , and on the flavor of the
active quark. As the definition (11) reveals these are 1/x-
moments of SPDs at zero skewedness. The link operator
needed to render the definition of the SPDs gauge invari-
ant is not displayed in (11), i.e., we assume the use of
a light-cone gauge combined with an appropriate choice
for the integration path which reduces the link operator
to unity. Due to time reversal invariance the form factors
are real functions. The form factor RMa

T is controlled by
higher-twist dynamics and is expected to be suppressed
by m2/t as compared with RMa

V [9]. Since the calculation
of the soft contributions is only accurate up to corrections
in Λ2/t, RMa

T is to be omitted for consistency. Hence, we
can only calculate the amplitudes conserving the proton
helicity. Explicitly they read

MM(q)
0+,µ+(s, t) =

e

2

{
HM(q)

0+,µ+(s, t)
[
RM

V (t) +R
M
A (t)

]
+ HM(q)

0−,µ−(s, t)
[
RM

V (t)−RM
A (t)

]}
, (12)
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where the form factors specific to the process γ∗p → Mp
are defined as

RM
V,A(t) =

∑
a

eaB
M
a RMa

V,A(t). (13)

From parity invariance one has MM(q)
0ν,µν = −κM (−1)µ

MM(q)
0−ν,−µ−ν and an analogous equation for the parton-

level amplitudes HM(q)
0λ′,µλ. The amplitudes for longitudi-

nally polarized photons simplify as a consequence of parity
invariance: the vector form factor, RM

V , contributes only in
the case of vector meson production while the axial vector
form factor, RM

A , contributes in the case of pseudoscalar
mesons. This is analogous to DVEM. For transversally
polarized photons, on the other hand, both form factors
contribute.
Let us now turn to the calculation of the parton-level

amplitudes. The mesons are described by their valence
Fock components and, for a longitudinally polarized vector
meson, we write the corresponding matrix element in the
usual way as〈

V, q′ ∣∣ψ(x)γµψ(y)∣∣ 0〉
= q′

µfV

∫ 1

0
dτφV(τ)eiq

′·(τx+τ̄y), (14)

where the proportionality between the meson’s polariza-
tion vector and its momentum, q′, for longitudinally polar-
ized vector mesons is employed. For pseudoscalar mesons
we have 〈

P, q′ ∣∣ψ(x)γ5γµψ(y)
∣∣ 0〉

= iq′
µfP

∫ 1

0
dτφP(τ)eiq

′·(τx+τ̄y). (15)

The meson masses are ignored. τ is the fraction of the me-
son’s momentum the valence quark in the meson carries.
The momentum fraction of the antiquark is τ̄ = 1 − τ .
fM is the meson’s decay constant and φM its distribution
amplitude which is normalized as∫ 1

0
dτφM (τ) = 1. (16)

The definitions (14) and (15) are equivalent to the other
frequently used ones [10] (/q′/21/2)fVφV/(2

√
2Nc) and

(/q′γ5/21/2)fPφP/(2
√
2Nc). The color factor 1/(Nc)1/2

(where Nc denotes the number of colors) is not displayed
in (14) and (15); it is taken into account in the parton-level
amplitudes explicitly.
Working out the Feynman graphs shown in Fig. 3, one

finds for the parton-level amplitudes

HM(q)
0+,µ+ = 2παs(µR)fM

CF
Nc

∫ 1

0
dτφM (τ)f (q)

µ (τ), (17)

where

f
(q)
+ (τ) =

√−2t
s+Q2

{
(s+Q2)(τs+Q2)− τ̄uQ2

τ̄ s(τt− τ̄Q2)

+
(s+Q2)(τs−Q2)− τ̄uQ2

τu(τ̄ t− τQ2)

}
,

f
(q)
− (τ) = −τ̄

√−2t
s+Q2

{
u

τ̄(τt− τ̄Q2)
+

s

τ(τ̄ t− τQ2)

}
,

f
(q)
0 (τ) =

2Q
√−su

s+Q2

{
u

s(τt− τ̄Q2)
+

s+Q2 + τ̄u
τu(τ̄ t− τQ2)

}
.

(18)

CF = (N2
c − 1)/(2Nc) is the usual SU(3) color factor.

Parity invariance fixes the amplitudes with negative quark
helicities. For the scale of the parton-level amplitudes we
choose µR = s/4 which is roughly the average of the gluon
and quark virtualities in the hard process.
In principle the amplitudes (17) hold for all values of t

and Q2 provided the internal quark and gluon virtualities
are sufficiently large. In the limit of either Q2 → 0 or
t → 0 the amplitudes (17) simplify strongly. In the case
of photoproduction we find

HM(q)
0+,++ = −2παs(µR)fM CF

Nc
〈1/τ〉M

√−2t
u

,

HM(q)
0+,−+ = 2παs(µR)fM

CF
Nc

〈1/τ〉M
√−2t
s

, (19)

and HM(q)
0+,0+ = 0 (∝ Q for Q2 → 0). In deriving (19) we

made use of the symmetry of the distribution amplitude
for the mesons of interest under the interchange τ ↔ τ̄ ,
φM (τ) = φM (τ̄). One observes that only the moment

〈1/τ〉M =
∫ 1

0
dτ
φM (τ)
τ

(20)

contributes. In the limit of large Q2 and small −t, the
case of DVEM, the amplitude for longitudinally polarized
photons, HM(q)

0+,0+, also becomes proportional to the 1/τ
moment, cf. for instance [24], while terms ∝ 1/τ2, 1/τ̄2 in
the other two amplitudes signal the break-down of factor-
ization for transversally polarized photons [25]. Inserting
the parton-level amplitudes (17) into (12), one obtains the
final expressions for the helicity amplitudes.
For flavor-neutral vector meson there is a complication

which we now have to discuss, namely gluons have to be
considered as active partons as well. Again this situation
is similar to DVEM [5,6,24]. In the kinematical region of
Λ2 � Q2 � s, characteristic of the HERA experiments,
the gluon contribution even dominates [26,27]. We start
the calculation of the gluon contribution from an expres-
sion similar to (5)

MV(g) =
∑
a

eeaB
V
a

∫
d4kθ(k+)

∫
d4z

(2π)4
eik·z

× 〈p′|TAρb(0)Aρ′b′
(z)|p〉HV(g)

ρρ′bb′(k′, k), (21)

where k and k′ denote the momenta of the on-shell gluons
in the symmetric frame, see (6). Aρb is the gluon field with
color b. For the sake of legibility we do not display helicity
labels in this equation. The proton matrix element is only
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non-zero if b = b′. With this in mind we omit color labels
in the following for convenience.
Now, we have to repeat all steps of the derivation of the

quark contribution. As there, the use of the approximation
(6) forces the relative distance of the fields in the proton
matrix elements to the light cone, z → z̄. The important
point is now the use of the light-cone gauge, n · A = 0
(where n = [0, 1,0⊥]) which allows to express the gluon
field by an integral over the field strength tensor Gνµ [3,
5,28]

Aν(z̄;n) = nµ
∫ ∞

0
dσe−εσGνµ(z̄ + σn). (22)

(The limit ε → 0 is understood.) With the help of argu-
ments similar to those leading to (7) we can replace the
products of fields appearing in (21) by

Aρ(0)Aρ′
(z̄) =∑

λ,λ′=±1

ερ(k, λ)ε∗ρ
′
(k′, λ′)

∫
dσdσ′e−εσ−ε′σ′

×Gµ+(σ′n)Gµ′+(z̄ + σn)ε∗µ(k, λ)εµ
′
(k′, λ′). (23)

The hard scattering kernels appearing in (21) are thus
contracted by the first set of on-shell gluon polarization
vectors in (23) which leads to gauge invariant parton-level
amplitudes

HV(g)
0λ′,µλ = ε∗ρ

′
(k′, λ′)HV(g)

ρ′ρ (k′, k)ερ(k, λ) (24)

The gluon helicity flip (λ = −λ′) is suppressed in the
proton matrix element at large −t since two units of or-
bital angular momentum are required in order to avoid
helicity flips of the proton (ν = −ν′). Thus, matrix ele-
ments involving helicity flips of the gluons are suppressed
at least as ∝ m2/t and will be omitted. This argument
is of importance only for longitudinally polarized photons
because, for µ = ±1, the parton-level amplitudes H0λ,µ−λ
turn out to be zero in any case. For λ = λ′ one may de-
compose the last part of (23) into an unpolarized and a
polarized gluon contribution

Gµ+(σ′n)Gµ′+(z̄ + σn)ε∗µ(k, λ)εµ
′
(k′, λ)

=
1
2
Gµ+(σ′n)Gµ′+(z̄ + σn)

[
gµµ

′
⊥ + λPµµ′]

, (25)

where g11
⊥ = g22

⊥ = 1 and P12 = −P21 = i, while all other
components of these tensors are zero. That only the trans-
verse components in that contraction remain is a conse-
quence of the chosen light-cone gauge (implying Gµ+ = 0)
and of the form of the polarization vectors in the symmet-
ric frame

ε(k, λ) = [0, ε−, ε⊥(λ)],
ε(k′, λ′) = [0, ε′−, ε⊥(λ′)], (26)

where ε⊥(±1) = ∓(1,±i)/21/2.

As for the case of quarks, see (11), we introduce a form
factor decomposition for the proton matrix elements of the
field strength tensors∫ 1

0
dxp+

∫
dz−

2π
eixp

+z−
∫ ∞

0
dσdσ′e−εσ−ε′σ′

×〈p′, ν′|Gµ+(σ′n)Gµ′+(z̄ + σn)|p, ν〉gµµ
′

⊥

=
ū(p′, ν′)γ+u(p, ν)

2p+
Rg

V(t)

+
i
2m

ū(p′, ν′)σ+ν∆
νu(p, ν)

2p+
Rg

T(t) (27)

and ∫ 1

0
dxp+

∫
dz−

2π
eixp

+z−
∫ ∞

0
dσdσ′e−εσ−ε′σ′

×〈p′, ν′|Gµ+(σ′n)Gµ′+(z̄ + σn)|p, ν〉Pµµ′

=
ū(p′, ν′)γ+γ5u(p, ν)

2p+
Rg

A(t). (28)

The form factors are related to the SPDs at zero skewed-
ness (Fg

ζ=0, Kg
ζ=0 and Ggζ=0), e.g.

Rg
V(t) =

∫ 1

0

dx
x2 Fg

ζ=0(x, t). (29)

Since the forward limits of Fg
ζ and Ggζ are defined in such

a way that

xg(x) = Fg
ζ=0(x, t = 0),

x∆g(x) = Ggζ=0(x, t = 0), (30)

one may still call these form factors 1/x-moments of SPDs.
Neglecting Rg

T, as in the case of quarks, we finally arrive
at the helicity amplitudes for the gluon contribution

MV (g)
0+,µ+(s, t) =

e

2

[
HV (g)

01,µ1(s, t)
(
RV g

V (t) +RV g
A (t)

)
+ HV (g)

0−1,µ−1(s, t)
(
RV g

V (t)−RV g
A (t)

)]
, (31)

where
RV g

V,A =
∑
a

eaB
V
a R

g
V,A. (32)

Because of parity invariance HV (g)
0−1,−µ−1 = (−1)µ HV (g)

01,µ1

the form factor RV g
A does not contribute to the amplitudes

for longitudinal photons.
The parton-level amplitudes, to be evaluated from the

six lowest-order Feynman graphs shown in Fig. 5, read

HV (g)
0+,µ+ =

2παs(µR)
Nc

fV

∫ 1

0
dτφV(τ)f (g)

µ (τ), (33)

where

f
(g)
+ (τ) =

√
t

2su
Q2

s+Q2

1
τ τ̄

tQ2 − (s+Q2)2 − 4τ τ̄su
(τ̄ t− τQ2)(τt− τ̄Q2)

,
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Fig. 5. Lowest order Feynman graphs for the subprocess
γ∗g → Mg

f
(g)
− (τ) =

√
ut

2s
s

s+Q2

1− 4τ τ̄
τ τ̄

Q2

(τ̄ t− τQ2)(τt− τ̄Q2)
,

f
(g)
0 (τ) =
Q

s+Q2

1
τ τ̄

2τ τ̄ [Q2(s+Q2)− t(s−Q2)]− tQ2

(τ̄ t− τQ2)(τt− τ̄Q2)
. (34)

Since the gluon amplitudes only contribute to photopro-
duction of flavor-neutral vector mesons whose associated
distribution amplitudes are symmetric under the inter-
change τ ↔ τ̄ , we display only the τ ↔ τ̄ symmetric part
of the amplitudes in (34). The quark amplitudes (18), on
the other hand, contribute to the production of flavored
mesons too. We, therefore, show the full quark amplitudes
although we do not discuss these cases here.
As one may see from (34), the gluon amplitudes vanish

in the limit Q2 → 0. Finite γg → V g amplitudes may be
obtained if meson masses and/or transverse momenta are
taken into account (cf. for instance [27,29]).
The amplitudes (21) have to be added to those given

in (12) for vector mesons:

MV
0ν′,µν = MV (q)

0ν′,µν +MV (g)
0ν′,µν . (35)

3 The form factors
and the meson distribution amplitudes

Before we present numerical results for the observables of
electroproduction of mesons, we have to model the new
form factors. In (13) the general composition of these new
form factors is presented in terms of the individual flavor
contributions. The explicit flavor structure of the form
factors for various mesons is given in Table 1. In contrast
to Compton scattering [7] where the sum runs over all
flavors, here the sum is over the valence quarks of the
produced mesons. In other words, the meson selects its
valence quarks from the proton. The physical situation is
thus similar to DVEM in this respect. For vector mesons,
also the flavor factors associated with the gluonic form
factors (see (31) and (32)) are listed in the table.

ω–φ mixing is ignored since the corresponding mixing
angle is very small. η–η′ mixing, on the other hand, is

Table 1. Flavor composition of the form factors RM
i (i = V,A)

for pseudoscalar and vector mesons and the flavor factors for
the gluonic form factors

RM
i RV g

i

ρ0, π0 1
21/2

[
euRMu

i − edRMd
i

] 1
21/2 [eu − ed]Rg

i

ω, ηq
1

21/2

[
euRMu

i + edRMd
i

] 1
21/2 [eu + ed]Rg

i

φ, ηs esR
Ms
i esR

g
i

taken into account. Following [30], we work in the quark
flavor basis and write

η = cosφPηq − sinφPηs,

η′ = sinφPηq + cosφPηs. (36)

ηq is a state built from u and d quarks only while ηs is a
ss̄ state. The parameters of that η–η′ mixing scheme, the
mixing angle, φP, and the decay constants, fq and fs, of
the basis states are determined in [30] on exploiting the
divergencies of the axial vector currents which embody
the axial vector anomaly. For the mixing angle a value of
39.2◦ is found in [30].
As inspection of (10) and (11) reveals, the form factors

RV a
V,A are exactly the same as those appearing in Comp-
ton scattering [7,8]. Thus, in principle, from a combined
analysis of data on Compton scattering and production
cross section for various mesons, one may extract some
information on the form factors for individual flavors from
experiment. This may allow tests of the soft mechanism
independent of a specific model for the form factors.
For a numerical estimate of the form factors we use the

model proposed in [7]. In a frame where ∆+ = 0 the SPDs
and, hence, the form factors can be represented as over-
laps of light-cone wave functions summed over all Fock
states in close analogy to the familiar Drell–Yan formula
[31]. A detailed discussion of that overlap representation is
given in [7,32]. Each N -particle Fock state is described by
a number of terms, each with its own momentum space
wave function ΨNβ , where β labels different spin-flavor
combinations of the N partons. Assuming a single Gaus-
sian k̃i⊥-dependence of the soft Fock state wave functions

ΨNβ(xi, k̃⊥i) ∝ exp

[
−a2

N

N∑
i=1

k̃2
⊥i
xi

]
, (37)

one can explicitly carry out the momentum integration
in the overlap formula. The ansatz (37) satisfies various
theoretical requirements [33,34] and is in line with our
central hypothesis that the soft hadronic wave functions
are dominated by transverse momenta with k̃2

⊥i/xi ≤ Λ2,
necessary to achieve the factorization of the electropro-
duction amplitudes into soft and hard parts2. The results

2 The wave function (37), perhaps multiplied by a polyno-
mial in the xi, is not continuous in the end points xi = k̃⊥i = 0
(i = 1, 2 or 3). It can, however, be shown [32] that the overlaps
evaluated from such wave functions, are infrared stable, i.e.,
they are not dominated by contributions from regions of very
small xi and k̃⊥i



430 H.W. Huang, P. Kroll: Large momentum transfer electroproduction of mesons

of the transverse momentum integration for the vector and
axial vector form factors are respectively related with the
Fock state contributions to the unpolarized (qa(x), g(x))
and polarized (∆qa(x), ∆g(x)) parton distributions. For
simplicity one may assume a common transverse size pa-
rameter aN = â for all Fock states which seems to be a
reasonable approximation since, for large -t, the main con-
tribution to the overlap integral is only due to a limited
number of Fock states [7]. This simplification immediately
allows one to sum over the Fock states without specifying
the xi-dependence of the wave functions. One then arrives
at the following model for the form factors for individual
flavors (a = u, d, s):

RV a
V (t) =

∫ 1

0

dx
x
exp

[
1
2
â2t
1− x

x

]
{qa(x) + q̄a(x)},

RPa
V (t) =

∫ 1

0

dx
x
exp

[
1
2
â2t
1− x

x

]
{qa(x)− q̄a(x)},

Rg
V(t) =

∫ 1

0

dx
x
exp

[
1
2
â2t
1− x

x

]
g(x). (38)

The corresponding axial vector form factors are obtained
from (38) by replacing the unpolarized parton distribu-
tions qa, g with the polarized ones, ∆qa, ∆g.
As shown in [7] an evaluation of these form factors

from the parton distributions of Glück et al. (GRV) [35]
(taken at a scale of 1GeV) and with â � 1GeV−1, leads
to results for Compton scattering in fair agreement with
experiment. In order to improve the model (38) the lowest
three Fock states were modeled explicitly in [7] assuming
specific distribution amplitudes, e.g.

φ123(xi) = 60x1x2x3(1 + 3x1), (39)

for the valence Fock state [16]. The form factors (38) for
the quarks are then evaluated from these three lowest Fock
states (with a3 = a4 = a5 = 0.75GeV−1) and the contri-
bution from all higher Fock states is estimated by setting
(aN = 1.3a3 for N > 5)∑

N>5

q(N)
a (x) = qa(x)−

∑
N=3,4,5

q(N)
a (x). (40)

The qa(x) are taken from the GRV parameterization [35]
and the three lowest Fock state contributions q(N=3,4,5)

a (x)
are evaluated from the light-cone wave functions. This
model provides a good fit to Compton scattering and to
the proton form factor F1 (by expressions similar to (38)
[7]). In Fig. 6 numerical results for the vector and axial
vector form factors are shown. The simplifying model as-
sumption of unpolarized gluons and sea quarks has the
consequence of a zero gluon form factor Rg

A. Most of the
strange form factors are therefore zero too:

RPs
V = RV s

A = RPs
A = 0. (41)

Only RV s
V is non-zero, even though very small. The form

factors for u quarks are largest. They approximately be-
have as 1/t2 in the momentum transfer region from about
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Fig. 6. The form factors RMa
V , RMa

A and Rg
V, scaled by t2, as

evaluated from the overlap model proposed in [7]

5 to 15GeV2; for the other flavors and for the gluon that
range is shifted to somewhat smaller values of −t. With
increasing −t the form factors for u and d quarks gradu-
ally turn into the soft physics asymptotics ∝ 1/t4, while
the other form factors decrease faster. The leading powers
of 1/t in the asymptotic behavior of the form factors (38)
follow from the xi-dependence of the model wave func-
tions at the end points (see for instance (39)) [7]. In the
region where the form factors drop as 1/t4 or faster, which
is above 100GeV2, the perturbative contribution will take
the lead.
The other soft physics information required in our ap-

proach is that of the form of the meson’s distribution am-
plitude. From analyses of the pion–photon transition form
factor (see for instance [12–14]) it became evident that the
pion’s distribution amplitude (its formal definition is given
in (15)) is close to the asymptotic form

φAS(τ) = 6τ(1− τ). (42)

This result is supported by the instanton model [36] and
by recent QCD sum rule studies [37]. The analyses of the
η–photon and η′–photon transition form factors revealed
that the ηq distribution amplitude is close to the form
(42), too [12,38]. Although the transition form factor data



H.W. Huang, P. Kroll: Large momentum transfer electroproduction of mesons 431

are compatible with the asymptotic distribution ampli-
tude for the ηs as well, a somewhat narrower one cannot
be excluded. For vector mesons no phenomenological in-
formation is available but QCD sum rules [39] taught us
that the distribution amplitudes for longitudinally polar-
ized vector mesons can also be approximated by (42). In
order to keep matters simple we therefore choose the form
(42) for all mesons. We expect that the uncertainties in
the predicted production cross sections due this choice do
not exceed 10–15%. Associated with the distribution am-
plitude (42) is a value of 3 for the 1/τ -moment (20).
For the meson decay constants we use the values [40]

fπ = 132MeV, fρ = 216MeV,
fω = 195MeV, fφ = 237MeV, (43)

and for the decay constants of the states ηq and ηs [30]

fq = 141MeV, fs = 177MeV. (44)

4 Photoproduction of mesons

Using (12) and (19), we obtain for the photoproduction
cross section

dσ
dt

M

=
1
2
αem

[
παs(µR)fM 〈1/τ〉M CF

NC

]2 −t
u2s4

×{
(s− κMu)2(RM

V (t))
2 + (s+ κMu)2(RM

A (t))
2} .
(45)

In Fig. 7 we show, as an typical example, the soft physics
contribution to the large momentum transfer photopro-
duction cross section of uncharged pions as evaluated from
the form factors discussed in Sect. 3. We see that at fixed
scattering angle the cross section approximately exhibits
the s7-scaling as predicted by dimensional counting [41].
This scaling behavior holds in the soft physics approach as
long as the form factors RM

V,A behave as 1/t
2 (see Fig. 6).

Similar results are found for the production of the other
mesons.
As compared to experiment (at s � 10GeV2) [20,22]

the soft physics contributions are too small by orders of
magnitude. This can easily be understood by evaluating
the ratio of π0 production and Compton cross section [7]

dσ(γp → π0p)
dσ(γp → γp)

=
−t
s

α2
s(µR)
αem

f2
π〈1/τ〉2π
s

csoft, (46)

where csoft, a ratio of form factors and kinematical fac-
tors, is of order 1. The ratio of the two cross sections is
therefore about 2GeV2/s, i.e. much smaller than unity, in
contradiction to experiment [20], where the ratio is about
50 (at s � 10GeV2, and a γ∗p c.m. scattering angle, θ,
of 90◦). Mainly responsible for the small ratio (46) is the
perturbative formation of the meson which only probes
small quark–antiquark separations in the meson. The am-
plitude is, therefore, proportional to the meson’s decay
constant which, for dimensional reasons, is to be scaled
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Fig. 7. The soft physics contribution to the cross section for
photoproduction of π0 scaled by s7 versus cos θ, where θ is the
scattering angle in the γ∗p c.m. system

by s1/2. The 〈1/τ〉π moment, appearing as a consequence
of the perturbative meson formation, cannot compensate
the small ratio fπ/s1/2.
The ratio (46) also holds in perturbative calculations,

in the pure quark picture [21] as well as in the diquark
model, a variant of the standard perturbative approach
in which diquarks are considered as quasi-elementary con-
stituents of baryons [42]. The factor cpert may, however, be
larger than unity. Although there is no obvious enhance-
ment in any of the many Feynman graphs contributing
to the perturbative amplitude, the graphs may conspire
in such a way that a large value of cpert is built up. In
order to see whether or not this is the case, an explicit
and reliable calculation of meson production within the
perturbative approach is called for.
The observation of a relatively large photoproduction

cross section in experiment is in line with the power law
behavior in s at fixed scattering angle. s−n-fits to the
present data in the range 6.5GeV2<∼ s<∼ 12GeV2 and 50◦

< θ < 130◦ provide [20]

γp → π0p : n = 8.0± 0.1,
γp → γp : n = 6.1± 0.3.

For the γp → (ρ0 + ω)p data [22] the statistics does not
allow a meaningful determination of the power n. How-
ever, n seems to be larger than 7, rather compatible with
8. For Compton scattering the power is compatible with
dimensional counting, while for π0 production, and pos-
sibly for the sum of ρ0 and ω production, the value of n
rather equals the one observed in elastic πp scattering [43]
(n � 8; the data are averaged over resonance-like struc-
tures)3. Admittedly, the photoproduction data are rather
poor and need confirmation. Data on photoproduction of

3 We recall that a s8-scaling of the fixed-angle elastic meson
baryon cross section is easily accounted for by the soft physics
approach in the relevant region of energy [9]. The cross section
for the process ρ0

⊥p → π0p, on the other hand, is expected to
scale rather as s10 due to the involved helicity mismatch
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φ mesons will become available from the TJlab soon [44];
these will perhaps allow a determination ot the power n
for that reaction.
Both observations in the large momentum transfer

photoproduction data, the large powers of s at fixed scat-
tering angle and the large cross sections, indicates that
another dynamical mechanism is at work here. It is tempt-
ing to assign it to the hadronic component of the photon.
This proposition is supported by a vector meson domi-
nance (VMD) estimate of the photoproduction cross sec-
tion. Combined with quark model ideas VMD, for in-
stance, relates photoproduction of ρ0 mesons to elastic
pion-nucleon scattering [45]

dσ
dt
(γp → ρ0p) = αem

πf2
ρ

m2
ρ

[
dσ
dt
(π+p → π+p)

+
dσ
dt
(π−p → π−p)

]
. (47)

This relation is satisfied by experiment within a factor of
2–3 [22]. With respect to the uncertainties arising from
possible spin effects and the poor quality of the data this
may be considered as a fair agreement. Thus, it seems
that photoproduction of ρ0 and π0 – and likely of other
mesons – is indeed controlled by the hadronic component
of the photon. In this case one would expect the produced
vector mesons to be polarized transversally rather than
longitudinally. Since the experimentally observed fixed-
angle energy dependences of the contributions from the
hadronic component of the photon (� s−8) and from our
soft mechanism (� s−7) are so close, much higher energies
are needed before the soft contribution (and/or the per-
turbative one) will control the photoproduction of mesons.
We, therefore, refrain from presenting more predictions
from the soft physics approach for photoproduction of
mesons. We stress that our approach to photoproduction
requires high energies, large momentum transfer and small
values of | cos θ|. For the case that s/ − t � 1 Pomeron
exchange becomes dominant, see for instance [46].
One may wonder whether Compton scattering is also

dominated by the hadronic component of the photon.
However, the analogous VMD estimate, with both the
photons replaced by vector mesons, provides values for the
Compton cross section that are about an order of magni-
tude below experiment [20] at s � 10GeV2. Moreover, the
Compton cross section exhibits s6-scaling and not an s8
one as would be the case if the hadronic component of the
photon dominates. Thus, the simplest elementary process,
elastic scattering of point-like photons from quarks, dom-
inates Compton scattering off protons already at rather
low energies [47].

5 Electroproduction of mesons

Let us now discuss our results for large momentum trans-
fer electroproduction. As is well known, the cross section
for ep → epM can be decomposed as follows

d4σM

dsdQ2dtdϕ
=

αem s

16π2E2
Lm

2Q2(1− ε)
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Fig. 8. The transverse and longitudinal cross sections for the
photoproduction of ρ0 mesons at s = 40GeV2 and θ = 90◦

×
(
dσMT
dt

+ ε
dσML
dt

+ 2ε cos 2ϕ
dσMTT
dt

+
√
2ε(1 + ε) cosϕ

dσMLT

dt

)
, (48)

where ϕ denotes the azimuthal angle between the hadronic
and leptonic scattering planes. EL is the energy of the in-
coming electron in the laboratory frame and ε is the ratio
of longitudinal to transverse photon flux. Details of the
kinematics can be found for instance in [48]. The partial
cross sections in (48) read as follows.
(i) The cross sections for transverse photons (reducing
to the unpolarized cross section for photoproduction of
mesons, i.e. for Q2 = 0) and for longitudinal photons, are

dσMT
dt

=
1

32πs(s+Q2)

∑
ν′,ν

|MM
0ν′,+ν |2,

dσML
dt

=
1

32πs(s+Q2)

∑
ν′,ν

|MM
0ν′,0ν |2. (49)

(ii) The transverse–transverse and longitudinal–transverse
interference terms are

dσMTT
dt

= − 1
64πs(s+Q2)

Re
∑
ν′,ν

MM∗
0ν′,+νMM

0ν′,−ν ,

dσMLT

dt
= −

√
2

64πs(s+Q2)

× Re
∑
ν′,ν

MM∗
0ν′,0ν

[MM
0ν′,+ν − MM

0ν′,−ν
]
. (50)

In Fig. 8 we show, as a typical example, the ρ0 production
cross section for a longitudinally and transversally polar-
ized photon as a function of Q2 at a scattering angle of
90◦. Except for small Q2 (Q2/s << 1) the longitudinal
cross section

dσML
dt

=
αem

4N2
c

[παs(µR)fMCF ]2

s(s+Q2)

{∫ 1

0
dτφM (τ)
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×
[
(1− κM )

[
f

(q)
0 (τ)RM

V (t) +
1
CF

f
(g)
0 (τ)RMg

V (t)
]

+ (1 + κM )f
(q)
0 (τ)RM

A (t)
]}2

(51)

dominates, i.e., the cross section that conserves the s-
channel helicity. Again we have similarity to DVEM. Also
similar is the fact that the longitudinal cross section for
the production of vector mesons is associated with the
vector form factors, RV

V , while in the case of pseudoscalar
mesons it is connected with the axial vector ones, RP

A . In
contrast to the limiting cases of either t → 0 or Q2 → 0
the explicit form of the mesons distribution amplitude is
required in the evaluation of the large momentum transfer
electroproduction cross section. Tuning the ratio Q2/t de-
tails of the distribution amplitude can be explored. To the
extent that the form factors behave ∝ 1/t2 strictly, dσ/dt
exhibits s7-scaling provided t/s and Q2/s are kept fixed.
In view of this we keep multiplying the fixed-angle cross
section by s7 since this compensates most of the energy
dependence.
The hadronic component of the photon vanishes with

increasing Q2 rapidly, approximately as m2
V/(Q

2+m2
V) in

the amplitude. This is for instance, clearly visible in the
integrated cross section for ρ0 production: while, at low
Q2(<∼ 2GeV2), its energy dependence is very similar to
that of the total cross sections for elastic hadron–hadron
scattering, it is much steeper at large Q2 [49]. The steep
rise of the ρ0 cross section is correlated with the behavior
of the gluon SPD for 0 < x′ ≤ x � 1 which should reflect
the strong increase of the gluon distribution for x → 0 [5,
27]. By virtue of the rapidly decreasing hadronic compo-
nent of the photon and the strong rise of the longitudinal
cross section (see Fig. 8) with increasing Q2, we expect the
soft physics approach to be applicable for photon virtual-
ities larger than about 2–3GeV2 provided s, −t and −u
are large.
Results for the partial cross sections for electroproduc-

tion of the ρ0 mesons are shown in Fig. 9 (at s = 20GeV2

and 40GeV2). We see that the longitudinal cross section
is dominant in the region of small | cos θ|. For larger val-
ues of | cos θ| the transverse cross section as well as the
longitudinal–transverse interference become sizable.
In order to demonstrate the relative magnitude of the

production cross sections for various mesons we display
predictions for the scaled longitudinal cross sections at
s = 20GeV2 and Q2 = 3GeV2 in Fig. 10. The gluonic
contributions to the cross sections for vector mesons are
generally small in the kinematical region of interest. This
is obvious from the relative strength of the quark and
gluon form factors, see Fig. 6. The exceptional case is the
φ meson. The only quark form factor contributing, RV s

V ,
is very small and the gluonic contribution therefore dom-
inates the production of φ mesons. Since the form factor
RPs

A is zero in the model (see (41)) the ratio of the longitu-
dinal cross sections for the production of η′ and η mesons
is given by the square of the tangent of the pseudoscalar
meson mixing angle, see (36).
Finally, we comment on the accuracy of our calcu-

lation. As we said repeatedly, large momentum transfer
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Fig. 9. The partial cross sections for electroproduction of ρ0

mesons versus cos θ at s = 20GeV2 and Q2 = 2, 3, 5GeV2

(top) and at s = 40GeV2, Q2 = 2, 5, 10GeV2 (bottom), plot-
ted as solid, dotted and dashed lines, respectively

and photon virtualities larger than about 2–3GeV2 are
required for the dominance of the soft mechanism. How-
ever, the momentum transfer should not be too large since
then the pure perturbative contribution [10,21] will be-
come important. The onset of the perturbative regime is
expected to be beyond t � −100GeV2 [7]. Even in the soft
regime one has to be aware of corrections. For instance,
the lowest-order, leading-twist perturbative formation of
the mesons may be subject to substantial corrections of
perturbative and/or soft origin. These may give rise to
a κ-factor in the normalization of the electroproduction
cross section as is known from the Drell–Yan process and,
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according to Martin et al. [27], is required in DVEM at
least at small Q2/s.

6 Summary

In the present work electroproduction of flavor-neutral
pseudoscalar and longitudinally polarized vector mesons
at large s, −t and −u is investigated. The photon virtu-
ality is not considered as a large scale; therefore the limit
Q2 → 0 is included in the investigation. This study of
electroproduction is complementary to the case of DVEM
where Q2 is large and −t small. Based on the central as-
sumption of the dominance of small parton virtualities and
small intrinsic transverse momenta in the proton’s light-
cone wave function we have shown that, like in Compton
scattering [7], the electroproduction amplitudes factorize
in hard parton-level subprocess amplitudes and soft pro-
ton matrix elements described by the same type of form
factors as appear in Compton scattering. These form fac-
tors represent 1/x-moments of SPDs. The soft mechanism
bears resemblance to the dynamics controlling DVEM [5,
6,24,26,27] in many respects: The same parton-level sub-
processes occur, the longitudinal cross section dominates
(if | cos θ| is small and Q2 not too small) and the soft in-
formation on the proton is encoded in SPDs. Different is
that, in the large momentum transfer region, a symmetric
frame with zero skewedness can be chosen which entails
the formation of 1/x-moments of the SPDs, i.e., the ap-
pearance of new form factors. For an asymptotically large
momentum transfer the perturbative contribution [10] will
take the lead; the soft contribution, discussed here, then
presents a power correction to it. We emphasize that the
dimensional counting rule behavior, i.e., s7-scaling, ap-
proximately holds for photoproduction of mesons in the
soft physics approach for a limited range of energy.
The new form factors, characteristic of large momen-

tum transfer Compton scattering and electroproduction
of mesons, can in principle be extracted from experiment
by Rosenbluth-type separations [50]. Their measurements

would provide information on the large momentum trans-
fer behavior of the proton SPDs and would allow to test
models for them. Moreover, the experimental verification
of their energy independence would constitute a severe
test of the soft physics approach.
Based on a light-cone wave function overlap model for

the form factors we have presented detailed predictions
for electroproduction of pseudoscalar and longitudinally
polarized vector mesons at moderately large photon vir-
tuality. Although the soft physics approach also applies
to large momentum transfer photoproduction of mesons
it seems – as judged on the basis of the present data –
that the contributions from the hadronic component of
the photon dominate these reactions up to rather high en-
ergies. The kinematical region in which the soft physics
approach is applicable to electroproduction is accessible
to experiments at the upgraded TJlab and at the pro-
posed ELFE accelerator and EPIC collider. The measure-
ment of large momentum transfer electroproduction of
mesons is certainly difficult but seems feasible. We have
not discussed electroproduction of flavored mesons and of
transversally polarized vector mesons in this work. These
processes involve flavor or helicity non-diagonal SPDs
which are not directly related to those appearing in the
processes we have investigated. As in DVEM [51,25],
higher-twist dynamics plays an important role in the elec-
troproduction of transversally polarized vector mesons
since the leading-twist, lowest-order subprocess
amplitudes are zero in this case.
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